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Remarks on the geometry of micelles, bilayers and

cell membranes

Y. BOULIGAND*
Histo- et Cyto-physique, EPHE, Laboratorie Arago, F-66650 Banyuls-sur-mer,

France

(Received 10 September 1998; accepted 16 October 1998 )

Starting from simple geometric properties of parallel surfaces, it is suggested that bilayers,
and also monolayers, present two spontaneous principal curvatures c and c ¾ , so that a narrow
disc of freely deformable bilayer might adopt either a s̀addle’ shape, or a h̀at’ shape, or a
cylindrical shape. Besides the usually considered spontaneous splay c0 = c + c ¾ , there is also a
spontaneous gaussian curvature g0 = cc ¾ , with noticeable eVects in strongly curved bilayers.
An excess of area of the median hydrophobic level with respect to the mean area occupied
by the two hydrophilic layers creates a saddle shape, whereas a de® cit leads to a hat shape,
the equality corresponding to a cylindrical shape. The usual two layers theory of the
spontaneous curvature seems to be improved by considering the role of a median layer. We
have tried to illustrate this new point of view by many examples. Due to their asymmetry,
monolayers and cell membranes give rise to micelles and vesicles of comparable geometries,
but of very diVerent sizes. At the considered scales, a term of order higher than quadratic,
such as kt (cc ¾ Õ cc ¾ )2, seems to be necessary in the expression of the elastic energy.

1. Introduction of the micelle, and R a radius corresponding to the
distance scanned by the molecule from the outer surfaceAmphiphilic compounds assemble into diverse types

of aggregates: spherical micelles, elongated micelles, to the centre of a spherical micelle (R S), or to the axis
of a cylindrical micelle (R C) or to the median level of abranched micelles, ¯ at or discoidal micelles, inde® nite

cylindrical micelles (linear or branched), ribbons, inde® nite ¯ at micelle or a bilayer (R B ). This ratio V /AR is 1/3 in
a spherical micelle, 1/2 in a cylindrical one and 1 in abilayers , etc. These micelles or bilayers also arrange

themselves into more or less ordered systems, corres- planar bilayer. V is constant but not A ; the assumption
of A constant would give R S/ 3 = R C/ 2 = R B= V /A , butponding to diVerent mesophases. The origin of these

shapes can be understood through diVerent approaches: A depends on the chemical environment and more simply,
one has R S>R C>R B , with generally less importantthe shapes of the molecules themselves, their motions

and interactions, depending on chemical and physical diVerences between the three radii, as will be seen below.
Several articles use similar parameters or more complexenvironment, the elastic energies and also geometrical

considerations, that we hope to develop here. ones, in association with calculations of elastic energies
[5± 7].Among the ® rst theories of lyotropic aggregates, one

is due to Winsor [1] who considered the cohesive We propose to consider a short series of geometrical
parameters of the same type: length, area, volume, radiienergies of the diVerent molecules and chemical groups

interacting at an interface, introducing a parameter R of curvature, directly accessible (or less directly), whose
association allows one to discuss the expected shapes ofto which a connection to curvature can be established

(review in [2]). One has R= 1 in bilayers, whereas R>1 molecular aggregates and bilayers present in lyotropic
preparations.corresponds to a divergence of lipophilic extremities and

R<1 to a divergence of hydrophilic extremities. Similar
2. Shape similarity of lyotropic units and cellideas were developed by Tanford [3] and Israelachvili

organellesand coworkers [4], indicating the importance of the ratio
The shapes of micelles are mainly known from theV /AR , V being the volume of an amphiphilic molecule,

study of mesophases in which they associate and amongA the area occupied by this molecule at the outer surface
these shapes there are those recalled above: spheres,
cylinders (branched or not), surfaces (toroidal or not).*Present address: EPHE and IBT, 10 rue A.-Bocquel,

F-49100 Angers, France. These micellar shapes are reproduced in vesicles (also
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502 Y. Bouligand

arti® cial vesicles) , tubes and more complex systems of
membranes or bilayers in the cytoplasm of living cells,
with dimensions compared with those of micelles being
multiplied by a variable factor, often close to 10, but
actually varying from 3 to 104 . These shapes are therefore
directly accessible by transmission electron microscopy
or in rare cases by light microscopy. We illustrated this
fact some years ago in a paper entitled Geometry and
topology of cell membranes, with main examples and
literature sources [8 (a, b)] and we shall see below some
new examples. In the present work, we give the reasons
for this similarity of shapes observed on two diVerent
scales, and we also indicate that many patterns known
in cytoplasmic organelles might have their counterpart
in micellar structures and lyotropic mesophases; they
are not usually considered, since they are di� cult to
deduce from X-ray diVraction diagrams.

3. Parallel equidistant surfaces

Let us return to a classical representation of parallel
surfaces (® gure 1), as in optics handbooks, for the
de® nition of caustics. Consider a smooth surface S 0 and
its parallel surface S , whose normals form a family of
straight lines, tangent to two focal surfaces or caustics
s and s ¾ . A system of curvilinear coordinates u , u ¾ can
be de® ned along the lines of principal curvature, and
along the normals to these parallel surfaces, with a third
(non-curvilinear) coordinate e.

An element of area dS0 = du0 du ¾0 , a small curvilinear
rectangle, centred in M 0 on S 0 , corresponds on S to a
homologous element of area dS= du du ¾ , centred in M .

Figure 1. (a) Set of parallel surfaces, hat-shaped in S 0 , S andThere are two centres of curvature C and C ¾ on the
S h , or saddle-shaped in S s , with their caustics s and s ¾ ,normal to S0 in M 0 , whose coordinates are respectively
their curvature centres C and C ¾ , their radii R and R ¾(0, 0, Õ R ) and (0, 0, Õ R ¾ ). This is represented in ® gure 1, of principal curvature of surface S 0 , and the constant

where S 0 is chosen with a positive gaussian curvature distance e separating S from S 0 . The area dS or dS0 of
(RR ¾ )Õ

1 . This gaussian curvature is negative for all curvilinear rectangles of sides du, du ¾ or du0 , du ¾0 , con-
sidered along the lines of principal curvature. (b) Stack ofsurfaces S cutting the segment CC ¾ , the points C and C ¾
parallel and equidistant surfaces, which are cylindricalexcepted, and is positive outside of CC ¾ along the normal
and seen in cross-section, showing a discontinuity corres-in M 0 . The area dS presents similar sign changes along ponding to a caustic seen in cross-section, but such walls

this normal, being negative between C and C ¾ and are absent in smectics. (c) The presence of a caustic within
positive outside. More precisely, if n is a unit vector a bilayer would create a severe disturbance; normals to

bilayer are indicated by dashed lines touching tangentiallyalong the normal in M 0 , one has
the caustic and, within this domain of high curvature,

CM 0 = Rn, C ¾ M0 = R ¾ n. molecules cannot arrange without modifying the bilayer
thickness. Such situations are relaxed in general by a

Let us compare dS in M (0, 0, e) to dS0 in M 0 (0, 0, 0): smoother distribution of curvatures.

du /du0 = CM /CM 0 = (CM0 + M0 M )/CM 0 = (R + e)/R .
which indicates that A (e ) varies as dS, since dS0 is
constant and chosen positive. A (e ) is represented by aSimilarly, du ¾ /du ¾0 = (R ¾ + e)/R ¾ and therefore:
parabola in ® gure 2, cutting the axis e at two points of

dS/dS0 = (dudu ¾ )/ (du0 du ¾0 )= (R + e)(R ¾ + e)(RR ¾ )Õ
1 . abcissa Õ R and Õ R ¾ , since A (Õ R )= A (Õ R ¾ )= 0 .

If c = R Õ
1 and c ¾ = R ¾ Õ

1 are the principal curvatures,
4. Hat-shaped and saddle-shaped bilayersone ® nds:

A bilayer can be schematized by three parallel surfaces
cutting the normal axis e at points M 1 , M 2 , M 3 ofdS/dS0 = A (e )= 1 + e (c + c ¾ )+ e

2
cc ¾ (1)

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
2
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



503Geometry of micelles/bilayers /membranes

at diVerent concentrations in the two monolayers. This
asymmetry is generally reinforced by proteins and poly-
saccharides associated to biological membranes. This
means that the splay energy is minimised when c+ c ¾ = c0 .
Helfrich and Deuling were able to account for the
biconcave shape of red cells or discocytes by assuming
the membrane to have a spontaneous splay c0 of such a
sign that it everywhere represents an outward concavity
[9]. This spontaneous splay is generally absent when
bilayers are prepared in vitro from puri® ed amphiphilic
compounds or their mixtures, since there are no reasons
to get such diVerentiations between the two monolayers.

The above considered inequalities indicate that another
origin is possible for a spontaneous hat shape in bilayers.Figure 2. Representation of variations of A (e)= dS(e)/dS(0 );

see the text. Consider a bilayer made of two identical monolayers,
with a molecular structure and surrounding chemical
conditions leading to a para� nic layer whose area iscoordinates e1 , e2 , e3 , so that e2 = (e1 + e3 )/2 ( ® gure 2).

The three points M 1 , M 2 , M 3 are grouped either between less than the mean area of the two associated hydrophilic
levels. In that case, a small disc of this bilayer adoptsC and C ¾ or outside, on the right or on the left along

the e axis, but the intermediate situations are forbidden, a hat shape, whose concavity is chosen either in one
or in the opposite direction. This is a non-polarizedsince the centres C and C ¾ and the caustics s and s ¾

themselves would lie within the bilayer, creating discon- spontaneous hat shape which occurs when the molecules
in excess in one of the two monolayers of the disc cantinuities, as was shown in earlier work [8 (c, d )] and as

can be seen in ® gure 1 (b, c). be àccepted’ by the rest of the bilayer, by lateral diVusion
or by an eventual but rare ¯ ip-¯ op [10]. In general, theWhen M 1 , M 2 , M 3 lie outside of CC ¾ ( ® gure 1), the

parallel surfaces are locally elliptical and the bilayer is local shape of a bilayer results from spontaneous factors
which show a polarity as c0 , but also from an excess orhat-shaped , a term adopted in [6 (b)]. In this case, one

has: |A (e2 ) |< |A (e1 )+ A (e3 )|/ 2 , as in ® gure 2 and the a de® cit of area of the hydrophobic layer compared with
the mean area of the hydrophilic levels.median hydrophobic layer occupies an area smaller than

the mean area of the two surrounding hydrophilic layers. It is worth remembering that biconcave vesicles were
observed in bilayers with c0 = 0 [11]. The discocyteOn the contrary, when M 1 , M 2 , M 3 lie within the

segment CC ¾ , the parallel surfaces are locally hyper- shape associates elliptical hats at the periphery, plus two
opposite spherical shapes about the axis and two circularbolic (® gure 1), the bilayer being saddle-shaped , and

|A (e2 ) |> |A (e1 )+ A (e3 )|/ 2 (® gure 2). Thus the median narrow bands of saddle-shaped membranes. The pre-
ponderance of hat-shapes can be due to an area de® cithydrophobic layer occupies an area larger than the mean

area of the two surrounding hydrophilic layers. These of the hydrophobic median layer. The area excess of the
outer monolayer along the curved peripheral cylinderinequalities also hold for three successive and equi-

distant levels e1 , e2 , e3 de® ned in a monolayer. A layer can be partially compensated by an area loss along the
two spherical areas. The biconcave vesicles with c0 = 0 aresandwiched between two other layers is larger than the

average of these two layers, if saddle-shaped (to take a strong argument for assuming not only a spontaneous
mean curvature, 1/2(1/r + 1/r ¾ ), which is a splay, butthis example), whatever the hydrophilic or hydrophobic

nature of this layer. also a spontaneous gaussian curvature, 1/r ¯ 1/r ¾ which
is a saddle± splay, to be an intrinsic property of theThese inequalities may not be very important in

smectics formed by very tight stacks of bilayers, whose membrane.
radii of curvature are large with respect to the layer
thickness. On the contrary, these inequalities are essen- 6. Mean curvature and gaussian curvature
tial for strongly deformed bilayers forming very small Consider now three parallel and equidistant surfaces
vesicles or highly toroidal surfaces. at levels e, 0 and Õ e, as in bilayers. From equation (1),

one ® nds:
5. Polarized and non-po larized spontaneous curvatures

[A (e ) Õ A (Õ e)]/ 2e = c + c ¾ (2)The spontaneous curvature usually considered in
bilayers is a splay c0 originating from the area diVerence and
separating the two monolayers, and observed in most
biological cell membranes, with phospholipids distributed [A (e )+ A (Õ e) Õ 2A (0 )]/ 2e

2 = cc ¾ . (3)
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504 Y. Bouligand

For e very small, this gives: and

c + c ¾ = dA (0 )/de (4) dVb /dS (0 )= 2e (1 + e
2
cc ¾ /3 ). (13)

and These purely geometrical relations, derived from
properties of parallel surfaces, indicate that the gaussian

2cc ¾ = d2
A /de

2. (5)
curvature cc ¾ strongly depends on the physicochemical

The term c + c ¾ = 1/R + 1/R ¾ is the splay of the unit conditions, which for a given number of amphiphilic
vector n normal to the layer along S 0 , and is twice the molecules and at constant temperature control the
mean curvature (c + c ¾ )/2 . The term cc ¾ is the gaussian corresponding volume dVb , the external hydrophilic area
curvature and we can write these two relations as follows: dS (e )+ dS(Õ e), and the median area dS(0 ).

c + c ¾ = [dS (e ) Õ dS(Õ e)]/ 2edS(0 ) (6)
7. The two spontaneous principal curvatures

cc ¾ = [dS (e )+ dS(Õ e) Õ 2dS (0 )]/ 2e
2 dS(0). (7) In the rest of the paper, we call e the half thickness

of a bilayer and to come back to ® gure 2, we chooseIntegrating the second equation over a closed surface
e2 = 0 for the median level of a bilayer, and e3 = + e andS 0 , of area S (0 ), p being the number of separate parts
e1 = Õ e for the two external levels. As indicated above,and t that of toroidal handles, the Gauss± Bonnet
to avoid singularities within a bilayer, A (Õ e), A (0 ) andtheorem gives:
A (e ) have to have the same sign, cf. ® gure 1. S (0 ) being
chosen positive, S(e ) and S (Õ e) are also positive, andP

R (0)
cc ¾ dS0 = 4p( p Õ t )= [S(e )+ S (Õ e) Õ 2S (0 )]/ 2e

2

therefore also A (0 ), A (e ) and A (Õ e), whatever the bilayer
shape, hat or saddle.

(8 a)
S(e ) and S (Õ e) are de® ned within a given physico-

chemical environment, for a small disc of bilayer in itsor
relaxed state, of median area S (0 ) and thickness 2e.

S (e )+ S(Õ e) Õ 2S(0 )= 8pe
2
( p Õ t ) (8 b) From the above relations (2 and 3), we see that c and

S (e ) and S(Õ e) being the areas of surfaces S (e ) and c ¾ are the roots of the equation
S (Õ e) parallel to S (0) at a distance e su� ciently short

2e
2
c

2 Õ ec[A (e ) Õ A (Õ e)]+ [A (e )+ A (Õ e) Õ 2A (0 )]= 0
to avoid singularities. For a simply closed surface, with

(14)a topology which is that of the sphere, p = 1 and t = 0,
and one has: S (e )+ S(Õ e)= 2S(0 )+ 8pe

2, the de® cit of and these roots are real, if the discriminant is positive
S(0 ) with respect to [S(e )+ S(Õ e)]/ 2 being 4pe

2, which or zero:
is not negligible for strong curvatures, in very small

[A (e ) Õ A (Õ e)]2 > 8 [A (e )+ A (Õ e) Õ 2A (0 )]. (15)vesicles for instance. For closed surfaces topologically
equivalent to a simple torus, S(e )+ S (Õ e)= 2S(0 ). The situation is represented in an x , y diagram (® gure 3),

The volume occupied by an amphiphilic molecule with x = A (e) and y = A (Õ e), and A (0 )= 1 . The inequality
within a mono- or a bi-layer is constant at a given (15) can be written diVerently:
temperature. A narrow prism of bilayer, with its lateral

A (e )+ A (Õ e) < 2A (0 )+ [A (e ) Õ A (Õ e)]2
/ 8 (16a)faces normal to the bilayer has a volume calculated from

the formula of the three levels: or
dVb = [dS(e )+ dS (Õ e)+ 4dS(0 )]e/ 3 . (9) x + y < 2 + (x Õ y)

2
/ 8 (16 b)

This gives for a monolayer with the levels e, e/ 2 and 0: and the existence of real roots is veri® ed for points lying
outside or along the parabola, whose symmetry axis isdVm = [dS (e )+ dS(0 )+ 4dS(e /2 )]e/ 6 (10)
the line y = x , and which is tangent to the x axis at

and it is worth remembering that dS(0 )= 0 in spherical point x = 4, and symmetrically to the y axis, at point
or cylindrical micelles.

y = 4.
From equations (6), (7) and (9), one ® nds useful The inequality (15) is always satis® ed by a

equations for bilayers or membranes, associating the small disc of a naturally saddle-shaped bilayer, since
external hydrophilic area, the lipophilic area, the volume A (e) + A (Õ e) Õ 2A (0 ) is then negative and the equation (7)
and the gaussian curvature: has two real roots c = 1/r and c ¾ = 1/r ¾ of opposite

signs, which are two spontaneous principal curvatures or[dS(e )+ dS (Õ e)]/ 2dS(0 )= 1 + e
2
cc ¾ (11)

principal splays.
[dS(e )+ dS(Õ e)]/dVb = 3(1+ e

2
cc ¾ )/e (3 + e

2
cc ¾ ) When A (e )+ A (Õ e) Õ 2A (0 ) is positive, the bilayer is

hat-shaped. The discriminant is positive above the line(12)
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505Geometry of micelles/bilayers /membranes

Figure 3. Bilayer local shape as a
function of A (e) and A (Õ e) for
S(0 ) constant. The dotted region
corresponds to impossible
deformations, with imaginary
curvature radii.

x + y = 2, and below the parabola, whereas it is zero of the x axis, due to an in® nite curvature. The straight
segment along y = x , within the s̀addle domain’along it. Again, this allows one to de® ne in this domain

two spontaneous principal curvatures or splays of like corresponds to minimal surfaces with R = Õ R ¾ .
signs, c and c ¾ , for a small bilayer disc adopting a hat
shape in its relaxed state. The diagram is obviously 8. Origin of shape similarities at diVerent scales

To summarize, a freely deformable disc of a bilayerlimited to A (e ) and A (Õ e) positive, and we can choose
A (e )>A (Õ e), without loss of generality, which reduces shows two spontaneous curvatures c and c ¾ , whose sum

and product are:the diagram to a 45ß sector. Since we also suppose that
the caustics do not penetrate the bilayer, it follows that,

c + c ¾ = c0 = [A (e ) Õ A (Õ e)]/ 2e (18)in the hat domain, the curvature radii R and R ¾ are
cc ¾ = g0 = [A (e )+ A (Õ e) Õ 2A (0 )]/ 2e

2
. (19)larger than e and we can write R >R ¾ > e >0 , also

without loss of generality. From equations (2 and 3), we They depend on A (e ) and A (Õ e), i.e. on dS(e ) and dS(Õ e)
deduce: imposed by the physicochemical environment for a given

dS (0 ), in the absence of any other external constraint[A (e )+ A (Õ e) Õ 2A (0 )]2e
2 = (RR ¾ )Õ

1 < e Õ
2

on the bilayer disc. The two spontaneous curvatures(17 a)
c and c ¾ are the roots of c

2 Õ c0 c + g0 = 0 which are
real when g0 < c

2
0 / 4 . Despite this simple presentation, weor

prefer the A (e ), A (Õ e) diagram, rather than the c0 , g0
A (e )+ A (e ) Õ 2A (0 )<2 (17 b) one, since A (e ) and A (Õ e) depend directly on the

physicochemical environment.and a fortiori A (e )<4A (0 ), which limits the study to
A (e ) < 4 , at the contact point of the parabola with the The usual theories simply compare dS(e ) and dS(Õ e)

[12] in order to show how a disc of hat-shaped bilayerx axis. In ® gure 3, the hat and saddle domains are
separated by the straight line x + y = 2 corresponding transforms into a planar one and then into a cup, which

means a hat of opposite concavity, the hats beingto the locally cylindrical shapes. Spherical shapes lie
along the parabola segment, the locus of double roots, restricted to the lower 45ß sector of ® gure 3 and the

cups to the upper 45ß sector. The three levels theorywhere c = c ¾ . The x axis corresponds to R ¾ = e and the
curvature centre C ¾ lies within one of the two hydrophilic presented here distinguishes between hats, saddles,

cylinders and all local shapes encountered. The diagramlevels, which corresponds to a local in® nite curvature.
Therefore, the x axis and its close vicinity must be x = A (e ), y = A (Õ e) also presents a symmetrical distri-

bution with respect to the line y = x , as in the twoexcluded from the hat and saddle domains, as leading to
prohibitive energies. On the contrary, the arc of parabola levels theories.

Similarly, the comparison of areas at three levelslimiting the imaginary domain is however realistic, since
it corresponds to planar bilayers at the top of the e1 , e2 , e3 , lying parallel and equidistant within the

structure of an amphiphili c monolayer, leads to the con-domain, transforming into spherical shapes along the
parabola arc, but its extremity with a tangential contact struction of an analogous diagram and to the de® nition

of two radii of spontaneous curvature. Biologicalat a point of the x axis must be excluded, like the rest
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506 Y. Bouligand

membranes and monolayers are both dissymmetrical arrangements are made possible with cosurfactants, for
example.and diVer from in vitro assembled bilayers, which are

symmetrical. The two spontaneous splays c and c ¾ The other observed aggregates are elongated micelles,
branched micelles, ribbons, discs, etc. and these associateare equal and opposite in these s̀ynthetic’ bilayers,

whereas they diVer in absolute value in monolayers and several parts which are spherical, cylindrical, planar
or toroidal. For instance, an elongated micelle can bein biological membranes. This means that the geo-

metrical ingredients of shape are identical in micelles considered as made of a cylindrical segment and two
hemispheres; similarly, a ribbon is a bilayer with twoand in biological membranes, with only a change of

scale. However, it occurs that symmetrical bilayers form hemicylindrical edges, and a disc is a circular piece of
bilayer limited by a half cylinder, circularly bent [13].analogous shapes, even in the absence of a spontaneous

splay c0 , the spontaneous gaussian term g0 creating Actually, these schematic models need to be modi® ed,
since they suppose that R S= R C= R B , whereas we haveeither hats or saddles according to its sign, positive or

negative. indicated in the introduction that we have R S>R C>R B ,
with important diVerences. This leads one to consider
shapes built with sphere and cylinder pieces, whose9. Plausible shapes of micelles and vesicles

The only known surfaces showing two constant dimensions are as in ® gure 4 (a, b), but this creates an
empty space in the d̀umb-bell’ micelle represented inprincipal curvatures are spheres, cylinders and planes.

These shapes are those mainly observed in lyotropic meridian section in ® gure 4 (d ). To avoid this situation,
toroidal zones are introduced to bind the diVerent partssystems: spherical micelles or vesicles, cylindrical micelles

or bilayer tubes, planar monolayers or bilayers, where of micelles, without discontinuities of the molecular
orientations, in order to attenuate the diVerence betweenc + c ¾ and cc ¾ are constant, but generally diVerent from

c + c ¾ and cc ¾ , the elastic constraint being uniformly R C and R B, this requiring the possibility of slight
molecular tilts in this region, ® gure 4 (e). Spherical anddistributed within these micelles and bilayers. A spherical

micelle, a cylindrical one and a bilayer are represented dumb-bell shapes are also found in vesicles made of a
single bilayer (® gure 5) or of several nested bilayers. Wein ® gure 4 (a, b, c); with their radii deduced from the

V /AR ratio (V and A being constant), the cylinder radius observed them in lecithin± water preparations, but many
micrographs were published before in the literature, fromis equal to the bilayer thickness, whereas the sphere

diameter is triple the bilayer thickness. As stated above, Nageotte in 1937 [14] to recent work, in particular
those due to Sekimura and Hotani [15].however, these diVerences between R S, RC and R B are

probably attenuated. These very diVerent aggregates are
obtained with the same amphiphilic compound, when 10. Size and shape parameters of micelles and vesicles

These micellar shapes are de® ned geometrically by athe length of the hydrophobic part can vary, due to
chain melting for instance, or if interdigitation is series of parameters which are radii of curvature or

other lengths. According to the micellar type, one, two,possible as in ® gure 4 (c), or both; or also when other
three or more parameters may be necessary and this is
illustrated in ® gure 6. A unique parameter, the radius
R S, completely determines the dimension of a spherical
micelle, ® gure 6 (a); for a cylindrical micelle, this will be
the radius R C, ® gure 6 (b). Two parameters are required
to specify the shape and size of an elongated micelle,
forming statistically an ellipsoid of revolution with two
radii R L and RR, the longitudinal one and the transverse
one, ® gure 6 (c). Three parameters are involved in the
shape and size of a dumb-bell micelle, if the structure is
simpli® ed to a cylinder of length L and radius RC,
linking two spherical extremities of radius R S, ® gure 6 (d ).
A supplementary radius R T is introduced, ® gure 6 (e),
when a toroidal belt joins the cylinder to its spherical

Figure 4. Main morphologies of lyotropic aggregates. extremities, as in ® gure 4 (e). A junction of three
(a) Spherical micelle, (b) cylindrical micelle, (c) bilayer, cylindrical micelles, generally separated by 120ß angles,
(d ) elongated micelle associating spherical extremities to is de® ned mainly by two radii, that R C of the cylinders
a cylindrical segment, with empty cavities, (e) rehandling

and that R T as shown in ® gure 6 ( f ). Since for a micelleof the elongated micelle, with a radius decrease at the
(monolayer) such a junction can be the nucleation centrespherical ends and a continuous tilt of molecules along a

toroidal belt (dotted zone). of a bilayer structure, a slight depression D is often
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507Geometry of micelles/bilayers /membranes

Figure 6. Main morphological parameters in the description
of micelles, vesicles and liposomes. These parameters are
mainly radii or lengths: the sphere radius R S in (a), the
cylinder radius R C in (b), the longitudinal radius R L of the
ellipsoid and the radius R R of the circular section normal
to R L in (c). In (d ), similar radii are used for the dumb-
bell description, R S and R C , plus the cylinder length L .
These three parameters do not su� ce, if we take into
account the presence of toroidal annuli as in ® gure 4 (e).
It is then more convenient to use the length L ¾ separating
the two centres of the spherical ends. Similarly ( f ), two
parameters R C and R T allow one to describe a branching
node and are, respectively, the cylinder radius, and the
tore radius along a generator in the plane of the threeFigure 5. Comparative morphology of micelles and bilayer
cylinder axes; a third parameter is necessary if one takessystems: micellar shapes are often reproduced by bilayers,
into account the depression D due to the nucleation of aat a larger scale. (a) Spherical micelle (with a para� nic
bilayer structure in the core of the bifurcation.core), (a ¾ ) spherical vesicle made of a bilayer enclosing

water, (b) cylindrical micelle (with a para� nic core),
(b ¾ ) cylindrical tube of bilayer (enclosing water), (c) a ¯ attening or branching and are topologically equivalent.
micellar dumb-bell (para� nic core), (c ¾ ) a vesicular dumb- For the various types of junctions (i ± k, y ), monolayer
bell (water core), (d ) branching cylindrical micelle, recombinations are necessary and also for (z ), with(d ¾ ) branching of a bilayer tube.

bilayer recombinations. This often produces systems of
highly toroidal bilayers showing in general a constant
mean curvature, but variable gaussian curvature. Amongpresent in the core and the thickness along the axis is

also a useful parameter in the description. the examples, there are the periodical minimal surfaces
found in many cubic phases of water± lipid systems andThe representations of ® gure 7 correspond to the main

shapes obtained from a monolayer (a) producing the also sponges, about which the question remains as to
whether the median bilayer surface is exactly minimal.three basic shapes, the sphere (b), the cylinder, rigid (c)

or ¯ exible (d ), and the plane (e). Their association Most of these shapes are observed in simple or
multilayered vesicles or liposomes. Tetrahedral micellesleads to a zoology with two classi ® cation principles; the

global shape, which is isometric, ¯ at or elongated and the or liposomes such as that of ® gure 7 (x) are not very
likely to exist, since they associate spherical and stronglycomplexity de® ned here by the number of parameters.

Arrows indicate a set of plausible transformations and saddle-shaped interfaces. This situation is realized at
a lower degree in ® gure 7 (u, v) and was observed inone gets a kind of evolutionary tree. Like most classi-

® cations, it does not work perfectly and the form (x) for liposomes by Sekimura and Hotani [15]. The cup shape
of ® gure 7 (r) is known in red cells or in vesicles calledinstance can be derived from the sphere, as well as from

the cylinder. The number of parameters depends on the s̀tomatocytes’, but this shape applied to a micelle corre-
sponds to an open vesicle, which is generally considereddescription accuracy, as indicated above for the dumb-

bell shape (o) and the triple junction (i ). This also holds as an unstable situation, and the system is s̀upposed’ to
reclose rapidly, but this probably depends on the elasticfor the other shapes requiring more parameters in their

de® nition. rigidities and spontaneous curvatures. In biological
systems, highly toroidal bilayers also form cubic phases,Most shapes, ® gure 7 (o± h, l, m, o ± x) are obtained from

a sphere, by continuous deformation, with elongation, but the bilayer median surface is not minimal, due to
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508 Y. Bouligand

Figure 7. The lyotropic m̀icrozoology’ or the main shapes observed or supposed to exist in micelles, and generally observed on a
larger scale in vesicles and liposomes. They are ordered according to their complexity (minimal number of parameters to
de® ne the shape and size) and according to a morphological trend, the structure being derived either from the sphere, the
cylinder or the plane. a: The monolayer or p̀rimordial’ pattern. b: Sphere. c: Rigid cylinder, with a circular cross section.
d: Flexible cylinder. e: Planar layer. f: Elongated revolution ellipsoid (rugby ball). g: Flattened revolution ellipsoid. h: Cylinder
with an elliptical cross section. i: Triple junction, with a slight depression in the core. j: Quadruple junction (tetrahedral) .
k: Sextuple junction (octahedral). l: Saddle-shaped layer. m: Hat-shaped layer. n: Triple layer junction. o: Dumb-bell.
p: Discocyte (biconcave) . q: Ribbon with cylindrical edges. r: Stomatocyte. s: Rounded triangle. t: Rounded square.
u± x: Branched dumb-bells, with coplanar branching or in two perpendicular planes. y: Reticulum. z: Sponge structure obtained
with spontaneously saddle-shaped bilayers.

composition diVerences between the two monolayers; follow sinuous contours, branching or not, often
associating into complex networks, ® gure 9 (a, b, c).the membrane rather conforms to a constant mean

curvature surface, indicating a likely constant pressure Cell membranes are known to be made of phospho-
lipidic bilayers to which are associated high contentsdiVerence between the two separated water compartments

(references in [8 (a)]). of proteins and polysaccharides, with an asymmetric
distribution. A good resolution on the scale of the
bilayer itself, which is 50AÊ thick, was made di� cult by11. An example of membrane polymorphism in

living cells the presence of these macromolecules. Each granule
diVers from the other, either by the type of order, or byAs indicated above, bilayers present in biological

systems arrange into shapes similar to those found in parameters such as tube diameter. This seems to be
possible, since each granule is isolated by a closed bilayermicelles, but on a larger scale, each length being multi-

plied by a factor of about 10, with large variations. The from the cytoplasm and from the other granules.
best example of membrane polymorphism that we know
is illustrated in ® gures 8 and 9, showing a particular 12. Plausible reticulation of elongated micelles

Among the remarkable patterns revealed by thesetype of secreting cells, studied in transmission electron
microscopy in thin sections of resin-embedded material. secretory cells, two must be considered more precisely:

(1) bilayer tubes joining into 2D periodic networks,This was observed in cells of the shore crab epidermis,
within secretion granules developing in the early phases which superpose as do bilayers in swollen smectics;

(2) branching bilayer tubes forming 3D networks, whichof the moulting cycle. Similar cells were described in the
cray® sh epidermis, in a sense organ, the statocyst [16], are also known in many other biological structures [18].

This suggests the existence of similar geometries in net-and also in epidermal glands near the eyestalk of lobsters
or close to the abdomen pleopods [17 (a)]. Similar works of branched cylindrical micelles, and particularly:

(1) systems of superposed layers made of reticulatedgranules are sometimes found in crustacean haemocytes
[17 (b)]. The secretion granules presented here contain cylindrical micelles; (2) cylindrical micelles forming 3D

networks.sets of membranes forming swollen systems of parallel
layers, planar or nested concentrically, or bilayer tubes The 3D-networks of bilayer tubes or of cylindrical

micelles exist in lyotropic cubic phases or in sponges,of variable diameter arranging into regular hexagonal
arrays or at random (® gure 8). In other granules, tubes and one can easily verify that they represent inverse
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509Geometry of micelles/bilayers /membranes

Figure 8. Secretory cell in the
epidermis of Carcinus maenas,
the shore crab. Epidermis of
the branchial cavity was ® xed
with 4% glutaraldehyde in
cacodylate buVer at pH7.3, for
1 h and post-® xed with 2%
OsO4 in barbital buVer, at
the same pH and for 15 min.
Bars= 1 mm. (a) A cell ® lled
with secretion granules made
of membranes arranged accord-
ing to ordered (hexagonal,
lamellar¼ ) or random pat-
terns. (b) Another view showing
many defects (edge or screw
dislocations in the lamellar
patterns).

phases. Both are supposed to exist in systems consisting systems are said to be bicontinuous, the bilayer being
continuous and multiconnected, separating two waterof water and the amphiphilic drug amiodarone and in

other lyotropic compounds of pharmaceutical interest compartments which are themselves continuous and
multiconnected. In the inverse phases, one has oily[19± 21].
labyrinths instead of water labyrinths, and the amphi-
philic molecules form two intertwined networks of13. Four types of swelling in lyotropic networks

A bilayer forming a periodic minimal surface (PMS), cylindrical micelles, separated by a toroidal surface lying
in water.generally cubic, separates two water compartments, which

can be considered as a set of tubes associating by their There are four possible types of swelling for such
phases, diVering by the nature of the swelling agentextremities at triple, quadruple or sextuple junctions,

according to the PMS type, and the axial segments of (water or oil ) and by the localization of swelling along
the toroidal surface, or along the axes of labyrinths.these tubes join similarly to form a labyrinth lying in

water [22]. Actually, there are two intertwined labyrinths There is also the possibility of a double swelling by
water and by oil. When swelling is important along thecorresponding to the two water compartments and the

situation is topologically similar for sponges. Such toroidal surface, with cylindrical micelles (direct or inverse)

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
2
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



510 Y. Bouligand

Figure 9. Carcinus maenas, as in
® gure 5. a: Some secretory
granules in diVerent section
planes, passing through the
centre, or almost tangentially.
b: At higher magni® cation, the
materials associated to mem-
branes resemble a glycocalyx of
cell membrane, known to be
made of polysaccharides. The
granule at top left shows an
edge-dislocation. Just below
is a set of branched tubes of
bilayers and, at the bottom
right, there are pairs of mem-
branes forming a reticulum.
c: At top left, a round granule
with ¯ exible tubes more or less
aligned and seen in longitudinal
view or in cross section.

arranged into a loose 3D lattice, the two labyrinths arrays (® gure 10, M1 ). At higher concentrations, branch-
ing of cylinders occurs, with cylindrical segments joiningprobably cease to form separate entities, since breaks

and recombinations occur without distinction between three by three, four by four (® gure 10, V1 ) or six by six,
to give another type of centred cubic lattice [24]. Thethe two networks.
lamellar phase then diVerentiates (® gure 10, G) and a
further increase of lipids leads to the sequence of the14. The Winsor model and its geometrical

consequences inverse phases, successively the cubic arrangements of
segments V2 , but now with water along the cylinderLamellar phases were often observed to occur between

two viscous cubic phases and this was discussed by axes, and ® nally the inverse hexagonal phase M2 and
the inverse micelles S2C .Winsor [1] and Scriven [23] in their presentation

of the lyotropic polymorphism and phase transitions In real diagrams, this phase series is not complete,
some phases being absent or replaced by others, aencountered along the concentration axis of a unique

and ìdeal’ amphiphilic component. columnar phase (rectangular or tetragonal) for instance,
instead of a hexagonal one.At low concentrations, but higher than the critical

micellar concentration (CMC), amphiphilic molecules It must be pointed out that new lyotropic phases have
been discovered [25], some of them showing a similarassemble into spherical micelles, separated by water,

and they arrange themselves into centred cubic networks, topology, whereas the discrete order of micelles is lost.
A centred cubic array of spherical micelles can bewhen repulsion forces are su� cient (® gure 10, S1C). A

concentration increase generally results in elongated and replaced by a random arrangement of these micelles
(® gure 10, S1 ). Similarly, the hexagonal or rectangularcylindrical micelles, which align and form hexagonal
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511Geometry of micelles/bilayers /membranes

and negative for diverging lipophilic tails. R is always
positive and R<1 corresponds to C >0, whereas, for
R>1, one has C <0. The consequence is that, in a ® rst
approximation, the mean curvature C of a monolayer is
also a monotonous function of the concentration of the
amphiphilic compound in water, with some exceptions,
and an example will be considered below.

Let us return to ® gure 4 and consider for the diVerent
micelles an outer smooth surface corresponding to the
average position of the van der Waals contours of the
polar heads. This surface is a sphere of radius R S in a
spherical micelle, ® gure 6 (a), a cylinder of radius RC in
a cylindrical micelle, ® gure 6 (b), etc. In spherical micelles,
the mean curvature is 1/RS . The passage to elongated
micelles, and ® nally to cylindrical ones, leads to the
diVerentiation of two local principal curvatures, with
a zero curvature in the longitudinal direction and a
transversal curvature 1/RC. The decrease of the mean
curvature C from its value CS , in a spherical micelle, to
the value C C, in a cylindrical one, leads one to write:
C S= 1/R S>C C= 1/2RC, from which one deduces thatFigure 10. Idealized phase diagram of a water-lipid system,
R C<RS<2RC. Branching introduces saddle-shapedredrawn from [1], [2] and [18] and completed by

representations of classical phases encountered, when the surfaces with two principal curvatures of opposite
surfactant concentration is increased progressively from signs, which are approximately 1/R C>0 and 1/R T<0 ,
0 to 100%. S1C : Cubic micellar phase. M1 : Hexagonal as shown in ® gure 6 ( f ), with |R T |> |R C|, the meanphase. V1 : Bicontinuous cubic phase. G: Lamellar phase.

curvature being positive. If the branching results in aV2 : Inverse bicontinuous cubic phase. M2 : Inverse hexa-
reticulating process, the monolayer becomes toroidalgonal phase. S2C: Inverse micellar cubic phase. A temper-

ature increase leads to isotropic sols or gels S1 and this increases the ratio of saddle-shaped surfaces in
corresponding for instance to globular micelles randomly the micellar system, ® gure 7 ( y). The mean curvature C Rdispersed in water. S¾1 could correspond to a disordered

of branched and reticulated micelles associates twoset of cylindrical micelles and S²
1 to a network of branching

opposite principal curvatures, but is still positive. Themicelles the topological equivalent of a bicontinuous cubic
phase. The phases S2 correspond to the inverse structures. central part of the branching is the nucleation centre

of a bilayer, which can develop with a mean curvature
C B close to zero. The successive mean curvatures

order of elongated micelles can be lost and the symmetry C S, C C, CR, CB form therefore a decreasing series:
is then nematic (® gure 10, S¾1 ), or isotropic if the orien-
tational order itself is lost. Sponges have the topology C S= 1/R S>C C= 1/2RC>C R
of bicontinuous cubic phases, but diVer from them by

= (1.2RC) Õ (1/2RT )>C B~0 .the absence of cubic order (® gure 10, S²
1 ), etc.

In his idealized phase diagram, Winsor included
Note that two hollows D can appear symmetrically,the amorphous solution phases encountered at higher

® gure 6 ( f ), along the threefold axis of a branching withtemperatures and also the eutectics alternating with
two hat shapes, presenting a local negative curvature,frozen phases at lower temperatures [1]. In between lie
and in the case of monolayer micelles these branchingthe lyotropic mesophases, supposed to present a discrete
nodes can be nucleation centres of bilayers. This indi-order whereas, at the level just above, the discrete order
cates a possible exception to the monotone evolution ofis lost, but possibly not the topology, as represented in
the mean curvature.® gure 10 (for the various S, S ¾ and S² , with indices 1 or 2).

For the following inverse phases, another seriesR is a parameter indicating the tendency of an amphi-
of inequalities can be written, the mean curvaturesphilic monolayer to become convex, either towards its
C SÕ , CCÕ , C RÕ and radii R SÕ , R CÕ being now consideredpolar environment (R<1), or towards its lipophilic
as negative and R TÕ positive:environment (R>1) [1]. This divergence in one direction,

or in the opposite, is expressed geometrically by the
C S= 1/RSÕ <C C= 1/2RCÕ <C Rlocal mean curvature C , a monotonous function of R,

which can be chosen positive for diverging polar heads = (1 /2RT Õ ) Õ (1 /2RCÕ )<CB~0 .
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512 Y. Bouligand

The mechanisms proposed by Winsor [1] also apply curvatures, submitted to curvatures c and c ¾ so that the
splay energy remains equal to zero (D c + D c ¾ = 0), has ato the shape variations in bilayers . A tendency of the

hydrophobic chains to converge within a bilayer, instead negative gaussian term since D cD c ¾ = Õ (D c)2; but this
corresponds to a deviation from the equilibrium value,of lying parallel, means that the area of the median level

is less than the mean area of the two external levels and and thus to a positive energy. The kg modulus is therefore
negative. Most measurements have given negative valuesthe bilayer is locally hat-shaped , if it can adopt its

spontaneous shape without external constraint. On the for kg [26, 27], but positive values were also considered
for synthetic bilayers [28, 29] with c0 = 0, and a spon-contrary, the bilayer is locally saddle-shaped , if there is

a tendency of lipophilic extremities to diverge, with an taneous gaussian curvature implicitly supposed to be
zero. In that case, a ¯ at bilayer (c + c ¾ = cc ¾ = 0 ) has aarea of the median layer larger than the mean area of

the corresponding external layers. This suggests a series zero energy after equation (22), but is unstable, since
it transforms spontaneously into a saddle, kg beingof transitions in the swelling of a smectic system of cell

membranes, cf. the variations in dimension exempli® ed positive. The only way to keep a positive energy for
such deformations is to add a term B (qu /qz )

2 correspond-in ® gures 8 and 9 and also in the case of an amphiphilic
drug such as amiodarone [20, 21]. As indicated above, ing to a thickness variation of bilayers as in [28, 29]. It

is true that deformations of layers can modify e, asin these conditions, bilayers and cell membranes can
mimic on a larger scale the shape evolution encountered suggested in equations (11± 13).

More generally it is somewhat surprising to have anin micelles.
energy term kg cc ¾ which easily changes its sign, the
density f of the elastic energy being a function of c15. The curvature energy of bilayers
and c ¾ represented by a paraboloid, which is elliptic ifThe elastic energy derived from the Oseen± Frank
2k + kg>0 but hyperbolic if 2k + kg<0, with levelformula applied to an isolated bilayer or a membrane is
lines then drawing a saddle point corresponding to anusually written:
unstable equilibrium. Our comparisons on the areas of

f = dF /ds = k(c + c ¾ Õ c0 )
2
/ 2 + kg cc ¾ (20) the hydrophobic and hydrophilic levels lead one to

consider the gaussian curvature term diVerently.with a spontaneous splay c0 , already considered, and Bending mechanisms of biological membranes havetwo rigidities: the splay coe� cient k, as in uniaxial been interpreted in terms of b̀ilayer couples’, the twoliquid crystals, and another elastic constant kg for the monolayers responding diVerently to a perturbationgaussian curvature cc ¾ [5± 7, 9± 11]. The energy of a [12], for instance by a variation of the area ratio offreely deformable bilayer disc shows a minimum when the two facing monolayers with the physicochemicaldf = k (c + c ¾ Õ c0 )(dc + dc ¾ ) + kg (cdc ¾ + c ¾ dc )= 0 and environment. Actually, such models lead only to thed2
f >0 , which leads to: production of hat-shaped surfaces. We prefer a three-

layered model, with a median oily layer sandwichedc = c ¾ = c0 k/ (2k + kg ) (21)
between two hydrophilic ones, this being expressed by

with df /dc= c (2k+ kg )Õ kc0 and d2
f /dc

2= 2k+ kg>0. rewriting equations (6) and (7):
Helfrich considered the simple case of a spherical

c + c ¾ = D 2 SW / 2eSL and cc ¾ = D 3 SW / 2e
2
SL .vesicle [6], with c = c ¾ = 1/ r with an equilibrium for

ceq = kc0 / (2k + kg ). In bilayers produced in vitro, c0 = (23)
ceq = 0, but stable spherical vesicles are often obtained,

SL= S(0 ) represents the area of the lipophilic medianin a constrained state of energy F = 4p(2k + kg ). Writing
level of a bilayer, D2 SW is the area diVerence (positiveD c = c Õ ceq and D c ¾ = c ¾ Õ c eq , Helfrich transforms
or negative) between the two outer layers in contactequation (20) into:
with water, inherited from the `bilayer couple’ model,

f = k (D c + D c ¾ )2/ 2 + kgD cD c ¾ . (22) D 3 SW is an area diVerence involving the three layers: the
excess or the de® cit of the mean area of the outer layersIn our model, with two spontaneous principal with respect to that of the median layer.curvatures, this can be considered as an invitation to The splay energy of a bilayer with local principalreplace in equation (20) the term kg cc ¾ by something curvatures c and c ¾ , islike kg (c Õ c)(c ¾ Õ c ¾ ) or kg (cc ¾ Õ cc ¾ ). There are two

diVerent ways to associate c and c ¾ to c and c ¾ , and the k(c Õ c + c ¾ Õ c ¾ )2/ 2 = k(c + c ¾ Õ c0 )
2
/ 2

idea is to choose the less energetic arrangement between = k[(D 2 SW / 2eSL ) Õ c0 ]2
/ 2.

kg (c Õ c)(c ¾ Õ c ¾ ) and kg (c Õ c ¾ )(c ¾ Õ c). There is also the
question of the kg sign. The small piece of bilayer con- The excess or de® cit of mean area of the outer

layers with respect to the inner one produces positivesidered above, freely deformable with two spontaneous
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513Geometry of micelles/bilayers /membranes

energies, which are likely to be an even function of non-zero curvatures, equation (24) gives:
(D 3 SW / 2e

2
SL ) Õ cc ¾ , the square for instance; this leads to

fS= k (2cS Õ c0 )
2
/ 2 + kt (c

2
S Õ cc ¾ )2

an energetic term such as kt (cc ¾ Õ cc ¾ )2, with a coe� cient
fC= k (cC Õ c0 )

2
/ 2 + kt (cc ¾ )2kt>0 which is not independent from B , but is diVerent

from kg whose physical meaning is not clear. This leads fB= kc
2
0/ 2 + kt (cc ¾ )2.

to a new expression for the elastic energy of bilayers
These energies are minimized when dfS /dcS=and membranes, which can be adapted to monolayers

dfC/dcC= 0 , and this leads, for the cylinder, toor micelles:
cC= c0 = c + c ¾ and for the sphere to

dF /dS= f = k(c + c ¾ Õ c Õ c ¾ )2/ 2 + kt (cc ¾ Õ cc ¾ )2. k(2cS Õ c0 )+ 2ktcS(c
2
S Õ cc ¾ )= 0 (25)

(24) which presents one real root at least. Knowledge of cC

leads to that of c + c ¾ and the value of cS to that of cc ¾ ,
The integration of this new biquadratic gaussian term if kt /k is known.

(cc ¾ Õ cc ¾ )2 over a surface decomposes into three parts: The curvatures cS and cC can be obtained from direct
that given by kt (cc ¾ )2 is proportional to the global bilayer observations of shapes in micelles and vesicles. This
area, that with ktcc ¾ cc ¾ is a Gauss± Bonnet integral, and becomes possible and accurate by transmission electron
that in (cc ¾ )2 is the one of interest for comparisons microscopy of frozen hydrated specimens within a thin

vitri® ed layer of water, by methods due to Chang et al.between structures of identical topology and area, but
[31] and now applied to water± lipid systems [32].of diVerent shape. Note that equation (24) can be applied

Another approach to cc ¾ is possible from direct obser-to monolayers, and associating them into a bilayer, this
vation of micellar shapes, not only the radii of curvature,leads to a ®̀ ve layer theory’ of bilayers and membranes,
but also the length of cylindrical segments, as inwhich can be compared with the three layer one. More
® gure 6 (d, e). In a dumb-bell micelle, it can be seen thatterms then have to be introduced, but their discussion
the ratio of the area occupied by the hydrophilic headswould be very long and we prefer to limit this con-
in contact with water over the volume of the amphiphilicsideration to a three-layered model. The need to consider
material in the micelle is a simple function of L (aa term such as kt (cc ¾ Õ cc ¾ )2 emphasizes that we deal
homographic one). The mean value of this ratio allowswith very high curvatures, as in micelles, small vesicles,
one to know that of cc ¾ , close to cc ¾ ; this is obtainedhighly toroidal membranes, etc.
from equations (12) or (13) written for bilayers, butIn principle, the lyotropic bilayers or monolayers
easily adapted to monolayers. Knowing c + c ¾ and cc ¾ ,considered here present a rotational symmetry C

2
, but

equation (25) then oVers access to the ratio kt /k.the diVerences between the areas S (+ e), S (0 ), S (Õ e) lead
to a symmetry breaking consisting in the diVerentiation

17. Concluding remarksof two principal curvatures.
Simple geometrical remarks on parallel equidistantAlthough several authors studied the origin of bilayers,

surfaces show that a small disc of a bilayer, isolated instarting from equation (20) or adding new gaussian
its physico-chemical environment, freely deformable with-terms as did KloÈ sgen and Helfrich [30], such as kII(cc ¾ )2
out any other constraints than its elasticity, generally

and kIV (cc ¾ )4, they did not consider the possibility of presents two spontaneous principal curvatures. This results
two principal spontaneous curvatures, and therefore the in a local s̀pontaneous shape’ which is a hat, a cylinder
introduction of a spontaneous gaussian curvature. or a saddle, and the principle also applies to mono-

layers, within micelles for instance. These spontaneous
curvatures depend on the environment, temperature in

16. Shape determination particular and, in most cases, on ionic conditions.
As indicated above, shapes with two constant principal The only surfaces presenting constant principal

curvatures are only spherical, cylindrical and planar, curvatures are the sphere, the cylinder and the plane.
which could be one reason, among others, for their Micelles and lyotropic aggregates such as bilayers or
general presence in micelles and vesicles. Other shapes biological membranes are often spherical, cylindrical or
are encountered and particularly the toroidal junctions planar; they can also present more complex shapes by
between these three basic shapes. The elastic energy the association of diVerentiated parts which themselves
presents a constant density f within monolayers or are spherical, cylindrical or planar, and join along
bilayers adopting such basic shapes. This density is fS narrow zones Ð generally saddle-shaped.
in a spherical end, fC in a cylindrical segment or fB in The coexistence of diVerent local shapes in a lyotropic

aggregate requires the possibility of shape variations fora planar structure; if cS and cC are the corresponding
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pharmaceutical drugs with remarkable liquid crystalline
properties at the origin of this work on micelles and
bilayers.
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